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Introduction
The purpose of this guide is to offer a brief, accessible review of the forecasting 
methods used by Airports Council International to produce aggregate airport traffic 
projections at the global, regional and country levels based on internationally 
comparable airport traffic data.1 The guide is not intended to be an exhaustive list of 
forecasting techniques or an advanced statistics manual. That is, the methodologies 
contained herein are primarily a function of the available data and time series at the 
international level.

Figure 1 comprehensively depicts the major existing categories of methods to 
generate predictions. This guide’s focus is on quantitative forecasts that are generated 
primarily by ACI traffic data while relying on outside sources for macroeconomic and 
demographic statistics. 

Figure 1: Forecasting techniques

Source: International Civil Aviation Organization (ICAO) Document #8991 (2006) 

1  This guide was authored by Aram Karagueuzian, Guillaume Rodier and Daniel Sallier with contributions by Patrick Lucas, as well as valuable inputs 
from members of the Airport Traffic Think Tank (at3) peer review group on earlier drafts. 
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What is forecasting?
The famous economist and diplomat John Kenneth Galbraith once stated that “There 
are two kinds of forecasters: those who don’t know and those who don’t know they 
don’t know.” His observation is probably not so much a critique of the forecasting 
profession but rather describes the inherent uncertainty in making predictions about 
the future. Measuring risk typically means gauging the parameters of a calculable 
unpredictability, such as in the case of a coin toss. The probability distribution for 
a coin toss can be easily computed, but that in no way means the outcome can be 
reliably predicted. Nobody knows for sure what the result will be, but everyone agrees 
it’ll be heads or tails—and that these alternatives are equally likely. Uncertainty refers 
to an incalculable unpredictability, like casting a die without knowing how many faces 
it has, what numbers are on those faces and if the die is balanced or not. Forecasting, 
therefore, is not risky; it’s uncertain because no one knows the full list of events that 
could occur in the future, or how probable each one really is. 

Forecasting typically implies the assumption that uncertainty can be correctly modelled 
as risk. There exists an underlying, “true” model that dictates the evolution of the 
variable of interest. Whether there really is such a model is unclear. What really matters 
are the implications of this assumption: that the future can be reliably predicted by 
analyzing the past. The variable moves in a distinguishable way; it evolves cyclically, 
follows a trend and exhibits seasonality. It remains unknown what will happen in the 
future but it is reasonable to assume that without any large disturbance, the variable 
will continue to evolve in a similar pattern. 

Predictions are not made blindly or arbitrarily; they are made methodically from 
meticulous consideration of past and present observations. A forecast is a function of 
the currently available data. 

						    

If the above equation is used as a representation of forecasting, then the input             
( ) represents available data, the function ( ) represents the method used and the 
output ( ) represents the forecasted value. Most quantitative models can be (loosely) 
represented in this way. Some also use other variables—and predictions of these—as 
input to produce forecasts. This approach is mostly used for medium- to long-term 
predictions, since univariate models perform quite well in the short run.

Why forecast?
Forecasts are a crucial ingredient in airport planning for the determination of future 
capacity requirements. Because infrastructure projects are costly and involve many 
resources, a data-driven understanding of future demand such as the expected 
number of aircraft movements, passenger traffic throughput and air cargo volumes 
gives airport planners and investors the necessary information for effective decision 
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making. Applications for these forecasts may include managing expected peak demand 
on both the airside and landside of an airport under a short time horizon over a span of 
months. On the other hand, long-term forecasts are used to plan over decades. Thus, 
irrespective of the element of uncertainty with future outcomes and events, forecasts 
are still required to understand various scenarios, all other things equal.

Forecasting horizons
Table 1 summarizes the differences in perspective between the main actors of the 
industry. They are compared through four forecasting horizons: very short term, 
short term, medium term and long term. Note that while the actual time intervals 
associated with these terms vary from one actor to the next, the typical purpose of a 
given horizon is largely invariant.

Table 1: Forecasting terms by industry

Airlines

Airports

Aircraft/engine
manufacturers

Civil aviation
authorities

Very Short     Short    Medium      Long

  Next flight       Current IATA season     Next 12 months 3 to 5 years

Next day to current
IATA season

Current and
next year Next 5 years Up to 20-25 years

Current year Next 5 years Up to 20-25 years

Current year Next 5 years Up to 30-40 years

Mostly for operational 
reasons and resource 

allocation

Operational and 
budget reasons

Budget reasons
and investment
adjustements

Strategic decisions,
long term investment, 
product infrastructure 

developments

When compared in measurable time, it is clear that airlines are different from other 
industries in the air transport value chain. The airlines’ long run is roughly equal 
to the other industry stakeholders’ medium run. This is the consequence of 
airlines having a level of flexibility (in implementing changes to their products, 
networks and fleets) that the rest of the industry’s players do not. While most 
of the forecasting methods presented here are used in a plethora of fields and 
situations, this guide focuses on short-, medium- and long-term forecasting using 
internationally comparable airport data. 
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Tools and techniques for short-term forecasting

ACI traffic data
Demand for air transport is subject to variations in any given year and beyond. When 
variability is a recurring phenomenon, the data series that describes traffic over 
time is said to have a seasonal component. This seasonal component is inherently 
non-stationary in that the behaviour of the data is dependent on time. Similarly, 
over longer periods of time, a cyclical component is observed, which captures either 
expansions or contractions in traffic. The cyclical component tends to coincide with 
the global business cycle. Figure 2 illustrates passenger traffic over time. An overall 
upward trend is observed in both the original and deseasonalized series. Random 
events or irregular episodes are also depicted in Figure 2.

Figure 2: Global passenger traffic (2000–2014)

Source: World Airport Traffic Database (2015) 
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Generally speaking, time series are sequences of measurements of a variable 
taken at equally spaced time intervals. The frequency at which the data is collected 
may be quarterly, monthly, weekly, daily and so on.  Time series data consists of 
four components:

•	 Trend: long-term upward or downward movement observed in the data over 
several years;

•	 Seasonal: short-term patterns in the data that repeat themselves;

•	 Cyclical: a sequence of smooth fluctuations—longer than a year—around 
the long-term trend characterized by alternating periods of expansion and 
contraction; and

•	 Irregular: comprises the residual, erratic fluctuations of the series, which 
cannot be attributed to the first three or systematic components.

The trend and cycle are combined since many series available are relatively short.

Decomposition models
Decomposition techniques develop forecasting models in which time series 
components—trend, seasonal, cyclical and irregular—are isolated and measured. 
There are two types of models:

•	 Additive: assumes that the components of the series behave independently 
of each other. An increase in the cycle-trend will not cause an increase in the 
seasonal component; and

•	 Multiplicative: assumes that the components are interdependent, meaning 
that an increase in the trend-cycle causes an increase in the magnitude 
of seasonality.

Additive:  and 

Multiplicative: and 

In the above two equations is the original series, is the trend-cycle, is the 
seasonal component, is the irregular part and  is the seasonally adjusted series.

The multiplicative decomposition model uses a method called “ratio-to-moving 
averages” to calculate the seasonal variation, and trend analysis (using regression) to 
measure the trend component. The effects of the seasonal component are measured 
in the form of indices while the effects of the trend component are measured directly 
from the data.
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The first step in applying this decomposition technique is to remove the trend 
component from the data. Several methods can be used such as linear regression, 
differencing or exponential smoothing. Ratio-to-moving averages is the most common 
method to remove the trend component. As can be surmised from its name, the 
method uses moving averages and subsequently ratios to develop seasonal indexes. 
Since the frequency of the data is monthly, a centered twelve-month moving average 
(or twelve-month optimally weighted moving average) for the data is calculated. The 
centered moving average (CMA) measures any trend effect.

The division of the trend component by its corresponding CMA would isolate the 
seasonal-irregular component, also known as the de-trended data.

				  

Each value of SI is an estimate of its corresponding seasonal index. One overall 
seasonal index for each month is calculated by taking the average of all matching 
seasonal index estimates. The resulting seasonal indices should then be normalized 
(the sum of the indices should add exactly to twelve) in order to obtain .

These seasonal indices predict the seasonal influence of that month of the year in 
comparison to expected values for that segment of the year. A seasonal index greater 
than one implies higher values than expected for that month, and conversely, a 
seasonal index less than one implies smaller than expected values for that month.

The actual data  is deseasonalized by dividing the monthly values by their appropriate 
seasonal indices.

			       

The deseasonalized data contains only the trend and irregular components; hence 
linear regression is applied to estimate the inclination from the deseasonalized 
data. This trend equation is used to generate projections for future periods. The 
final forecast for each period is calculated by multiplying the forecast trend by the 
corresponding seasonal index.

In the same way, the additive decomposition method uses a centered twelve-month 
CMA to estimate the trend-cycle component which is then subtracted from the original 
series to obtain the seasonal-irregular component.

			        

The seasonally adjusted series are calculated by subtracting the normalized seasonal 
indices from the original series.

			    

The forecasts are calculated by adding back the seasonal indices on the forecasted 
trend.
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Exponential smoothing with trend and seasonal component 
Four categories of triple exponential smoothing models are identified in this section. 
The difference lies within the types of trend and seasonal components: 

•	 Additive trend, additive seasonality;

•	 Additive trend, multiplicative seasonality;

•	 Multiplicative trend, additive seasonality; and

•	 Multiplicative trend, multiplicative seasonality.

The following are the simplified sets of equations for each of the four exponential 
smoothing models:

  Level (overall) smoothing

  Trend smoothing

  Seasonal smoothing

Where vary in each model and are conditionally defined in table 2.

Table 2: Exponential smoothing variations

Multiplicative Trend

Additive Trend

Additive seasonality Multiplicative seasonality

Ut = Yt – St-s
Vt = Lt-1 + bt-1
Wt = Lt – Lt-1
Xt = Yt – Lt

Ft+m = Lt + mbt + St+m-s 

Ut = Yt – St-s
Vt = Lt-1 x bt-1
Wt = Lt / Lt-1
Xt = Yt – Lt

Ft+m = Lt x bt + St+m-s 

Ut = Yt / St-s
Vt = Lt-1 + bt-1
Wt = Lt – Lt-1
Xt = Yt / Lt

Ft+m = (Lt + mbt) x St+m-s 

Ut = Yt / St-s
Vt = Lt-1 x bt-1
Wt = Lt / Lt-1
Xt = Yt / Lt

Ft+m = Lt + bt x St+m-s m m
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Note that  is the observation at time ,  is the smoothed observation at 
,  is the trend factor at ,  is the seasonal index at  and  is the 

forecast for period t+m given knowledge of data up to period t. The parameters α, 
β and γ are constants that are generated to maximize predicted forecast accuracy.                                                                                                                                        

The level  is initialized by calculating the average of the actual values for the first 
season

					         

The initial  is assumed to be 0 or 1 for the additive or multiplicative trend respectively.

				          

The seasonal indices are initialized by taking the data-to-average ratio of the 
first year

					           

Autoregressive Integrated Moving Average (ARIMA) models 
To properly grasp what ARIMA modelling entails, it is essential to understand what 
autoregressive and moving-average models are, as well as what differencing entails.

Autoregressive models can be written as:

			           

where  is the value for time ,  are the model’s parameters,  
are the  last values of  and  is the current error term. This model is called an 
autoregressive model of order  or AR( ) in short. The value of  is estimated at 
time  by adding the constant  to the weighted sum of the  past observations. For 
example, an AR(1) would yield

  as an estimate of  for time .

Moving-average models can be described as:

			          

where  is the value for time ,  are the model’s parameters and  are 
the error terms of the  past periods. This model is named a moving-average model of 
order  or MA( ). The value of  is estimated at time  by adding together the constant 
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—the series’ mean—to the weighted sum of the  most recent observation’s errors. 
For example, an MA( ) would produce:

	          as an estimate of the value of  at time . 

Differencing is done to remove trend and seasonality from the data. Stationarity, 
the property by which the distribution (mean, variance, etc.) of the data remains 
stable over time, is an important condition for ARIMA modeling. If the data is steadily 
rising, then taking the difference between the current observation and that of the 
previous period ( ) is a good way to get a trendless series. This is called the 
first difference. If the trend is not constant but evolving at varying rates, it might be 
necessary to take additional differences. Seasonal differencing (  for example) 
might also be considered if the data features seasonality. For example, if the original 
series ( ) exhibits a constant trend in addition to monthly seasonality, the modified 
series

 			              

will be stationary, since it features first differencing and seasonal differencing of order 
12. The presence of trend and seasonality is not always obvious to the naked eye. 
A more reliable way to detect patterns in the data is to compute its autocorrelation 
and partial autocorrelation functions (ACF and PACF). Autocorrelation refers to the 
correlation of a variable’s value at a certain time ( , for example) with past values of 
itself ( ). ACF graphs the average observed correlation for each lag.

Suppose that  is correlated with its lag-1 value, , with a coefficient of 0.95. If  
is also highly correlated to its own lag-1 value, , then  will be correlated to 
. The autocorrelation function of  will show high values at lags 1 and 2. It reveals 
that  is strongly correlated with its past values, for all t. It can’t help identify what 
lags truly help to determine the value of . Does the original correlation emanate 
from  or ? To answer this question, the PACF, which isolates the effect of each 
lag, must be used. A significant partial autocorrelation between an observation and 
its lag-k value means that there is a correlation between those two quantities net of 
the effect of all other lags (1,2,…,k-1). 
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Table 3: Classic ACF and PACF patterns

ACF PACF

Exponential decay or damped 
sine-wave pattern

Exponential decay or damped 
sine-wave pattern

Significant spikes at lags 1 to 
p; then becomes much smaller

Significant spikes at lags 1 to 
q; then becomes much smaller

AR(p)  

MA(q)  

Table 3 shows how to interpret classic ACF and PACF figures. An exponentially decaying 
ACF accompanied by a PACF with significant spikes up until a certain point ( ) is a 
good indicator that the series follows an  process of order . Similarly, an ACF with 
significant spikes from 1 to a given point ( ) and a PACF that is converging towards 
0 points towards an  model. Some time series exhibit features of both  and 

 processes; for estimating these, a more complex (and more general) model is 
required.

ARIMA models, also called Box-Jenkins models, allow for the inclusion of 
autoregressive terms, moving average terms and differencing operations. Such 
models are typically noted as  where  is the order of the autoregressive 
part of the model,  is the number of differences performed and  is the order 
of the moving-average section of the model. For seasonal   data, the notation 

 is used, where , ,  have the same definition as before 
and  is the order of the seasonal autoregressive portion of the model,  is the 
number of seasonal differences and  is the order of the seasonal moving-average 
part of the model. The form of seasonality, which here is a 12-period (month) 
cycle, is also indicated. The general  equation is

    

where  is the value of  for time  and  is the error at time  The model parameters 
,  are associated with standard , standard , seasonal  and seasonal , 

respectively. The quantities ,  have the same definition as above. The are 
backshift operators2 of order .  For example, 

		   

is the formulation of an ARIMA(1,1,1)(1,1,1)12 .

ARIMA processes are a class of linear models capable of representing stationary as 
well as non-stationary time series by relying on autocorrelation patterns in the data. 
They do not involve independent variables in their construction and make use of the 
information in the series itself to generate forecasts.
2 This operator is defined so that  meaning that a value  at time  modified by the operator of order  will be equal to the value  periods 
ago. For example, . The value for the third period modified by a backshift operator of order 2 is equal to the value in period 1.

∑∑
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Forecasting methodology with ARIMA is different from most methods since it does not 
assume any particular pattern in the historical data of the series to be forecasted. It 
uses an interactive approach of identifying a possible model from a general class of 
models, which is then checked against historical data to see if it accurately describes 
the series.

The Box-Jenkins methodology refers to a set of procedures for identifying, fitting and 
checking ARIMA models with time series data. If the analyst encounters a problem at 
any of these stages, corrections must be made. Eventually, a specified model should 
fill all the required criteria. Forecasts follow directly from the form of the fitted model. 

The choice of  and  can also be automated. This usually involves having an 
algorithm that isolates values of the model’s parameters which allow for a minimal 
level of a criterion such as Akaike’s Information Criterion (AIC). Since the chosen 
criterion is an indicator of a model’s average forecast error, the algorithm finds the 
model which presumably offers the best forecast. Regardless of the method used to 
discriminate between models, it should involve cross-validation rules or test statistics. 
These are discussed in more detail later in the section on model selection.

Tools and techniques for medium- and long-term forecasts
When analyzing medium- or long-term trends, it is common to look at annual data. 
This means that the seasonal component of time series will be removed. The cycle 
and trend are the factors of interest. This new focus and time horizon implies that a 
different set of tools should be used.

Univariate models
Another approach is to predict future movements of the variable of interest by 
analyzing the available data. While some of the methods presented in the short-term 
forecasting section can be modified to tend to long-term predictions, this usually 
involves another layer of complexity for relatively small, if any, gain in comparative 
forecasting accuracy.

Trend projection
A different way to generate forecasts based on the observations is to find a function 
that mimics its pattern in a coherent way. Practically, trend analysis usually takes 
the form of a function with time as a variable. To perform this, one can use annual 
data or 12 sliding months’ cumulated data. The latter involves using monthly data 
and creating pseudo-yearly data. For example, suppose five years of monthly data, 
meaning that  data points are available. The first pseudo-yearly point will 
be the sum of months 1 through 12. The second will be the sum of months 2 to 13, 
and so on. A time series of 49 entries would be obtained where each entry  would 
be equal to the sum of the observed data for months  to month  (with  variying 
from 1 to 49). 
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Many functions can be written to represent the relationship between the variable of 
interest and time. The choice of functional form is left to the analyst’s judgement. 
Theoretical models and past data observation can both be relevant in making this 
decision. Table 4 shows a few example functions that could be used to model long-
term trends.

Figure 3: Examples of classic trend projections

The first is a linear trend which embodies the idea that the variable will continue to 
grow at a fixed pace ( ). This can be approximately true for relatively short time 
horizons even if the general trend is rather curved. If diminishing returns are expected, 
a logarithmic trend might be preferred. If increasing returns are more coherent with 
the available data, then an exponential formulation could be picked. The Gompertz 
function can help model cases where a period of increasing returns is followed by a 
time of diminishing returns; this is a typical assumption for very long-term market 
trends. Other S-curves like logistic functions can serve this purpose as well. The 
equations for the graphed examples are as follows.
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In all cases,  is the variable to be forecasted,  and  are constants chosen 
to minimize the function’s fitting errors and  is time, usually measured in periods. 
This is in no way an exhaustive list. Any mathematical function whose shape and 
properties are coherent with the data at hand and the intuition surrounding the 
variable’s evolution is a potential candidate. 

If future observations fall near the projected trend, it is safe to say that the functional 
form was properly chosen. Since there is no way to know if this will be the case 
beforehand, typical ways to choose a model function include:

•	 Looking for a function which mimics the properties predicted by a theoretical 
model of ;

•	 Trying several functional forms and picking the one which has the best fit3; and

•	 Looking at the data of related variables or similar but better documented 
variables to analyze their trend.

Causal models
The methods presented in the short-term forecasting section share a common 
characteristic: they are all univariate. In other words, they are methods in which the 
input is the past values of  and the output is a function of these observations. The 
models predict the variable’s future position by identifying patterns in its observed 
movements. Another fundamentally different way to generate forecasts is to identify 
the variables that determine  and use this information to build a predictive model. 
When dealing with economic data, this approach is referred to as econometrics.4

Regression models
The most common form of applied econometrics is the linear regression model. It 
consists of an equation describing the variable of interest as a sum of a number 
of explanatory variables, each multiplied by a constant parameter. The general 
expression for a linear regression is:

			        

where  is the variable of interest,  are the model’s parameters,  are the 
variable used in the estimation and  is the error term. Sometimes the distinction is 
made between simple regression analysis—the case with one explanatory variable—
and multiple regression analysis, which is the general case. When studying time 
series data, the general equation can be written as:

			      

3 Beware high degree polynomial. Typically, as the degree of a polynomial equation rises above 2 or 3, fit measures grow better but forecasts worsen. 
Additionally, this procedure binds the analyst to the assumption that fit accuracy and forecast accuracy share a monotonic relation.
4 For the purpose of this guide, econometrics is defined as the use of quantitative techniques on economic data aiming to empirically study economic 
relationships.
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where everything is as previously defined except that the time at which the variables 
( ) are taken is specified. Since the values change with , the error term is 
also time-specific. 

In order to provide adequate estimates of , conditions on the errors  must be 
imposed in such a model. First, the errors must average to zero. This is intuitive: if 
the errors have a non-zero mean it implies that the model is not capturing a global, 
intertemporal effect. The second condition is that errors should be uncorrelated with 
each other. A violation of this principle could mean that some seasonal or cyclical effect 
is being ignored by the model. Third, the errors should not be correlated with the 
predictors . Indeed, if the residuals systematically vary when a specific independent 
variable increases, then the model is not appropriately capturing its effect. Under 
these assumptions the multiple regression model will provide adequate forecasts. 
Note that the additional conditions of normally distributed errors and constant error 
variance are necessary to the production of prediction intervals.5

Once the selection of explanatory variables has been made, the model must be 
optimized. The parameters  are chosen jointly to minimize the sum of squared 
errors (SSE). Since the SSE is a measure of fit, it is important to then evaluate the 
model’s predictive capabilities when trying to forecast the values of  
with data up to period . Also note that the model produces a prediction of  as 
a linear function of other variables taken at time . If for example  is gross 
domestic product (GDP), then the GDP figure at time  is required to generate 
the estimation. The predictors need to be independently forecasted beforehand so 
they can be used as the regression’s input. Typically, independent variables include 
macroeconomic or demographic quantities such as GDP, population and interest rates.

Despite the model being linear in form, it is possible to introduce non-linear effects 
by transforming variables. One of the most common transformations consists in 
taking the natural logarithm of a variable so that its movements can be interpreted 
in percentages. For example, in the simple regression

					   

 can be interpreted as the quantity by which  should increase if  rises by 1 when 
all other factors are being held constant. If instead the following model is observed,

				          

then  is the amount by which  increases when  rises by 1%, all other things being 
equal. It is also possible to take the log of Y to express the change in percentage.6 

5 These are not to be confused with confidence intervals. While similar in concept, confidence intervals are used when estimating the mean of a 
population and prediction intervals are to be used when predicting the value a random variable will take. For more on prediction intervals, see 
Forecasting: principles and practice by Rob J. Hyndman and George Athanasopoulos (2014).
6  For more on logarithm transformations and non-linear effects in general, see Chapter 2 of Introductory Econometrics: A Modern Approach by Jeffrey 
M. Wooldridge.

14

where everything is as previously defi ned except that the time at which the variables 
( ) are taken is specifi ed. Since the values change with , the error term is 
also time-specifi c. 

In order to provide adequate estimates of , conditions on the errors  must be 
imposed in such a model. First, the errors must average to zero. This is intuitive: if 
the errors have a non-zero mean it implies that the model is not capturing a global, 
intertemporal effect. The second condition is that errors should be uncorrelated with 
each other. A violation of this principle could mean that some seasonal or cyclical effect 
is being ignored by the model. Third, the errors should not be correlated with the 
predictors . Indeed, if the residuals systematically vary when a specifi c independent 
variable increases, then the model is not appropriately capturing its effect. Under 
these assumptions the multiple regression model will provide adequate forecasts. 
Note that the additional conditions of normally distributed errors and constant error 
variance are necessary to the production of prediction intervals.5

Once the selection of explanatory variables has been made, the model must be 
optimized. The parameters  are chosen jointly to minimize the sum of squared 
errors (SSE). Since the SSE is a measure of fi t, it is important to then evaluate the 
model’s predictive capabilities when trying to forecast the values of  
with data up to period . Also note that the model produces a prediction of  as 
a linear function of other variables taken at time . If for example  is gross 
domestic product (GDP), then the GDP fi gure at time  is required to generate 
the estimation. The predictors need to be independently forecasted beforehand so 
they can be used as the regression’s input. Typically, independent variables include 
macroeconomic or demographic quantities such as GDP, population and interest rates.

Despite the model being linear in form, it is possible to introduce non-linear effects 
by transforming variables. One of the most common transformations consists in 
taking the natural logarithm of a variable so that its movements can be interpreted 
in percentages. For example, in the simple regression

     

 can be interpreted as the quantity by which  should increase if  rises by 1 when 
all other factors are being held constant. If instead the following model is observed,

          

then  is the amount by which  increases when  rises by 1%, all other things being 
equal. It is also possible to take the log of Y to express the change in percentage.6 

5 These are not to be confused with confi dence intervals. While similar in concept, confi dence intervals are used when estimating the mean of a 
population and prediction intervals are to be used when predicting the value a random variable will take. For more on prediction intervals, see 
Forecasting: principles and practice by Rob J. Hyndman and George Athanasopoulos (2014).
6  For more on logarithm transformations and non-linear effects in general, see Chapter 2 of Introductory Econometrics: A Modern Approach by Jeffrey 
M. Wooldridge.

, , ,Y

Y

tx1 … x k

et

x i,t

 , , ,β1 β2 … βk

, , ,Ym + 1 Ym + 2 … Ym + h  
Ym + j

x1m + j
m

m

+ j

xYt

Yt

= β0 + β1

β1

β1

1,t

x1,t

x1,t

+ et 

ln(x ) ,Yt

Yt

= β0 + β1 1,t + et



15

Alternatively, one can take other functions of the variables such as  or   but it 
should be noted that a model’s complexity does not guaranty its quality. 

It is common in the aviation industry to use fully or partially logarithmized linear 
equations to produce forecasts. The International Civil Aviation Organization (ICAO) 
uses a full logarithmic model to forecast revenue passenger kilometers (RPKs) using 
GDP and yields.7 The model is of the form:

			        

where  and , the coefficients of the regression, can be interpreted as the variation 
(in %) that occurs on RPK when the associated variable increases by one percent. 
Hence a rise of one percent in yield will engender a  change in revenue passenger 
kilometers, all other things being equal.

Table 4: Typical long-term passenger forecasting regression models

Using GDP 
Using GDP  and population 

Linear

Log-linear

Linear-log

Log-log

These standard regressions can be used to model passenger volumes using 
combinations of gross domestic product and population as explanatory variables. 
Table 4 illustrates the set of models used to produce medium- to long-term forecasts. 
The final figures are a function of GDP or GDP and population, and the relationship 
between these variables and the passenger figures depend on the form of the model.

Kenza model
It is possible to use economic data to formulate predictions without resorting to 
classic regressions. Typically, the variables in a linear regression are chosen from the 
intuition brought about by theoretical models. The procedure described here involves 
keeping the theoretical model’s equations, adjusting them to the specificities of the 
data and using this calibrated model to generate forecasts. In essence, the result can 
be described as a finely tuned simulation extrapolated  years forward. 

The Kenza model is specifically designed to forecast air traffic. Let the group of 
individuals above a certain income threshold be designated as potential passengers 
7  ICAO Document 8991 AT/722/3
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based on a population distribution. Let also the group of individuals from these 
potential passengers who actually travelled be called actual passengers. Given this, 
the model can be written as:

				        

where  is the quantity of passengers8 at time ,  is the population for period  and 
 is the average normalized price level for year .  is defined as follows:

				          

where  is the indexed fare at time t and  denotes the reference year. The function  
plots the percentage of total population with income superior to the income threshold 
designated by . It is referred to as the Kenza distribution.9 

Note that the model parameters  and  are not values of a variable for years 1 
and 2. These constants are assumed to be invariant through time, and are chosen to 
minimize 

			        

the sum of squared errors for the documented years ( ). While  can 
be interpreted as the ratio of actual to potential passengers,  is a multiplicative 
constant to the adjusted fare . For any real value of  the optimal value of  is 

				     

which can be obtained by taking the first order condition of the minimization problem. 
See Annex 1 for a demonstration of this result. The second constant’s optimal value 
can be found with the use of the bisection algorithm, a procedure that iteratively 
compares halves of the remaining domain in search for an optimal value. Although it 
can be slow compared to other computer-assisted optimization processes, it is a very 
common and robust optimization algorithm.

Model selection
Once the data has been processed and several predictions have been generated using 
the aforementioned methods, how does one choose the best estimates? Forecasting 
is an exercise in uncertainty, meaning that there is no perfect ex ante measure of a 
model’s predictive capabilities. Nevertheless, there are tools that help determine the 
appropriate model.

8   A passenger is counted once per arrival and once per departure with the exception of direct transits. In this specific case, a passenger will arrive at 
an airport and depart from it being counted only once. Passengers are not to be confused with actual consumers.
9  See Annex 2 for more information on Kenza distribution and elasticities.
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The easiest method is to observe the models’ properties and remove any that are 
inadequate. For example, the errors can provide valuable insight. The obtained 
residuals should be somewhat random-looking with a zero mean. If a trend or a 
pattern subsists in the residuals, then there is some predictable effect that the model 
has not captured, and the prediction intervals will not be reliable. Typically, this kind 
of elimination procedure is insufficient to narrow the list down to a single model. 
Additionally, it is usually redundant when using more advanced methods.

A traditional way to choose between models is to compare fit measures. The model 
chosen to compute the forecast is the one that best fits the available data. While this 
is easy and intuitive, it only makes sense under strong assumptions. First, one needs 
to assume that there is an underlying model which dictates the movements of the 
variable of study and that this model will remain unchanged throughout the forecast 
horizon. This means that the information contained in the available data can be used 
to reliably model the variable’s movements. The second required assumption is one 
of completeness. It says that all the information pertaining to the underlying model 
can be found in the available data. If this is not the case, fit measures and forecast 
accuracy remain unrelated and one may end up with a model similar to high-degree 
polynomials: amazing fit performance coupled with poor forecast accuracy. 

Fortunately, another approach exists which allows us to drop this rather strong 
second assumption. Cross-validation involves testing the forecasting capabilities of 
the model. It means using sections of the dataset to produce forecasts for other 
sections. The differences between the observed data and the estimates produced by 
the model are referred to as “predicted residuals,” and these provide a good measure 
of the reliability of a model’s forecasts. Where fit measures show how well the model 
sticks to the data being used in its construction, cross-validation measures give an 
indication as to how well the model sticks to the data that it is trying to predict. Leave-
k-out or k-fold cross-validation measures can be computed, with k depending on the 
length of the available data series.10 There also exist widely used statistics which are 
constructed to help gauge a model’s accuracy. Examples include Schwarz’s Bayesian 
Information Criterion (BIC), AIC and its corrected version for small samples (AICc).11 

Table 5: Summary of ACI forecasting models

Models

Decomposition models
Exponential smoothing
ARIMA

Linear regression
Log-linear, Linear-log, Log-log
Trend projection
Kenza model

Short term

Medium and long term

10 Many more cross-validation tests exist. See Arlot and Celisse (2010) for a rather thorough review of these measures.
11 Idem.
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It should be noted that the predicted residuals represent the errors that can be 
reasonably expected from the forecast given the first assumption (i.e., that the 
future can be predicted reliably from the past and present observations). While it is 
impossible to consistently choose the model that best fits the yet unobserved future 
values, it is important to pick the model which best performs in terms of forecast 
accuracy.
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Annex 1 – Deriving the optimal value of 
The value of  is obtained by minimizing the sum of squared errors. 	

			         

By developing the square we obtain

.

We then optimize for  and write the first order condition

,

which equates to

	    

After simple manipulations, we obtain

				  

the optimal value of .
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Annex 2 – Kenza distribution and elasticities 
The intrinsic elasticity of a Kenza distribution is defined as:

				         

with  being the normalization quantity by which prices are divided to obtain . It can 
be proven that the intrinsic elasticity is completely independent of the normalization 
quantity being used (GDP per capita, average individual income, median individual 
income, etc.). Assume that the demand is modelled by the first Kenza law of demand,

				        

then the demand elasticity to price  is equal to

				             

The demand elasticity to the normalization quantity  (e.g., GDP per capita or average 
revenue per capita) is equal to

				            

so demand elasticities directly derive from the Kenza intrinsic elasticity. 

Analysis of actual Kenza distributions for several countries shows large sections 
featuring an almost linear relationship between the intrinsic elasticity and the 
corresponding potential passengers (sorted by decreasing levels of income). Thus, the 
1st Kenza law of demand “naturally” takes into account the market’s long term, rather 
linear maturation process (demand elasticity to price decreases in absolute value). It 
should be pointed out that the market maturation process is not related to the market 
being studied. It means that it exclusively results from the way individual incomes 
are distributed in the considered population. The only market-related phenomenon 
is how fast the potential passenger segment grows or decreases with time. One 
of the main characteristics of the model is based on the Kenza distribution, which 
illustrates the (nonlinear) link between the individual revenue and the demand curve. 
The simplified Kenza function, based follows a linearization of the Kenza distribution 
of income, can be defined as 

				  

	      or more simply as  .

This could be considered as a very simple econometric linear model. The difference 
between the full and simplified Kenza models provides intuition as to the added value 
of taking into account the Kenza distribution function.
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